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Profile and Width of Rough Interfaces
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In the context of Landau theory and its field theoretical refinements, inter-
faces between coexisting phases are described by intrinsic profiles. These intrin-
sic interface profiles, however, are neither directly accessible by experiment nor
by computer simulation as they are broadened by long-wavelength capillary
waves. In this paper we study the separation of the small scale intrinsic struc-
ture from the large scale capillary wave fluctuations in the Monte Carlo sim-
ulated three-dimensional Ising model. To this purpose, a blocking procedure is
applied, using the block size as a variable cutoff, and a translationally invariant
method to determine the interface position of strongly fluctuating profiles on
small length scales is introduced. While the capillary wave picture is confirmed
on large length scales and its limit of validity is estimated, an intrinsic regime
is, contrary to expectations, not observed.
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1. INTRODUCTION

Under suitable conditions systems of statistical mechanics can exhibit
coexistence of different phases which are separated spatially by inter-
faces. Structure and properties of such interfaces have been investigated
both experimentally and theoretically, and still offer problems for current
research. Near critical points several interfacial properties are expected to
show universal behaviour.

Since the 19th century, there has been continuous interest in the the-
oretical description of interfaces(1–4). Traditionally, the interface has been
described by mean field theories and their refinements(5–7) as an “intrin-
sic” continuous profile with a width proportional to the bulk correlation
length.
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The existence of the interface, however, breaks the translational
invariance of the system, resulting in long-wavelength capillary wave fluc-
tuations of the interface position as Goldstone-modes. These fluctuations
are neglected by mean field theory which assumes a flat interface, but they
strongly influence the interfacial properties. According to capillary wave
theory,(8,9) the interface width, for example, depends logarithmically on
the system size and diverges in the limit of an infinite system.

Mean field and capillary wave theory can be viewed as a small-scale
and large-scale description of the interface, respectively, and then be com-
bined in the “convolution approximation”.(4,1) In this picture the interface
is described as an intrinsic profile which is centred around a two-dimen-
sional surface subject to capillary wave fluctuations.

While capillary wave behaviour has been observed in many sys-
tems (e.g. experimentally on liquid–vapor interfaces(10) and polymer mix-
tures(11), in simulations of polymer mixtures(12) and of the Ising
model.(13–15)) the mean field behaviour is difficult to access as the intrin-
sic profile – if it has a well-defined meaning at all – is broadened by the
capillary wave fluctuations.

The concept of intrinsic versus large-scale interface structure has so
far not been defined unambiguously outside a given theory. There is no
clear “snapshot” definition of an interface, which always shows overhangs,
islands, clusters which may be as well assigned to the phase-separating
interface region as to the fluctuation structure of the neighbouring homo-
geneous phases.

In this paper the attempt is made to separate the intrinsic structure from
the influence of the capillary waves via a blocking procedure reminiscent of
the Kadanoff block spin method of renormalization group theory. The sys-
tem of size L×L×D with an interface perpendicular to the D-direction is
divided into blocks of size B ×B ×D. The different length scales are sepa-
rated by using the block size B as a variable cutoff. To calculate the interface
position of the strongly fluctuating interface profiles on small length scales,
we implement a method which respects translational invariance (in contrast
to various other approaches in the literature). In this way, the local inter-
face position, the interface profile and the interface width can be studied on
the different length scales, thereby allowing a direct test of the convolution
approximation and of the limits of validity of the capillary wave theory and
of the mean field theory. It is found that on large length scales, the capillary
wave picture is consistent with the data.

On small length scales, however, contrary to expectations we cannot
identify an intrinsic interface profile with a width of the order of the cor-
relation length. For the case of the Ising model under study the concept
of the intrinsic profile is thus called into question.
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An approach based on blocking has already been used by Weeks(16)

for liquid–vapour interfaces in order to derive the capillary wave model
from a microscopic model Hamiltonian, thereby reconciling mean field
and capillary wave theory as small-scale and large-scale interface descrip-
tions, respectively. In the context of Monte Carlo simulations a procedure
similar to the one used in this paper has been applied by Werner et al.(12)

to homopolymer interfaces, finding consistency of their data with the con-
volution approximation.

2. THEORETICAL DESCRIPTION OF THE INTERFACE PROFILE

2.1. Intrinsic Interface Profile

Interfaces can be described in mean field theory by a continuous
profile φ(x) representing the difference between the concentrations of the
two coexisting phases. In the framework of Landau theory and its field
theoretical extensions the profile function plays the role of a local order
parameter. Near the critical temperature the free energy density is written
as:(17)

L= 1
2
(∂φ(x))2 +V (φ(x)) (1)

with the double-well potential

V (φ)=λ(φ2 −1)2 . (2)

The minima of this potential correspond to the two homogeneous phases,
whose densities have been normalized to ±1 for simplicity.

Minimization of the free energy density (1) with boundary conditions
appropriate for an interface perpendicular to the z-axis leads to the typical
hyperbolic tangent mean field profile(6)

φ(z)= tanh
(

1
2ξ0

(z−h)

)
(3)

with a width proportional to the mean field correlation length ξ0, which
diverges near the critical point with exponent 1/2. The parameter h spec-
ifies the location of the interface which is arbitrary due to translational
invariance.

Corrections due to fluctuations of the order parameter field can be
calculated systematically in renormalized perturbation theory. In the “local
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potential approximation” only corrections to the local potential V (φ)

are taken into account, whereas contributions involving higher powers of
derivatives are neglected. The resulting interface profile is of the form
φ(z)=f ((z−h)/2ξ), where the width is now proportional to the physical
correlation length ξ , which diverges near the critical point with exponent
ν. This corresponds to the scaling form proposed by Fisk and Widom(7).
To lowest order the profile function f is equal to the mean field profile
function, f = tanh. In higher orders, corrections to the potential V (φ) due
to perturbative loop contributions modify the mean field profile.(18) We
do, however, not consider them as they are numerically small and can be
neglected in our context.

The interface profile

φ(z)= tanh
(

1
2ξ

(z−h)

)
, (4)

in lowest order of the local potential approximation is to be distinguished
from the mean field profile. It represents a refinement of Landau theory
that is consistent with scaling(7) and holds near the critical point.

In the local potential approximation long wavelength fluctuations are
not fully taken into account. Consequently the profile (4) does not contain
the effects of capillary waves, which are discussed in the following section.
The function above thus represents an intrinsic interface profile.

2.2. Capillary Wave Theory

Translational invariance is broken by the presence of the inter-
face. The Goldstone bosons associated with this broken symmetry are
long-wavelength excitations of the interface position, which have vanish-
ing energy cost in the infinite wavelength limit.(19) These capillary waves
strongly influence interfacial properties like the interface width but are
neglected by mean field theory which assumes a flat interface. In capil-
lary wave theory, as introduced by Buff et al.(8), bubbles, overhangs and
any continuous density variations of the interface are neglected. The local
interface position is parameterized by a single-valued function h(x, y),
describing the interface as a fluctuating membrane. The free energy cost
of capillary waves is basically due to the increase in interface area against
the reduced interface tension σ . Thus the capillary wave free energy
(multiplied by the inverse temperature β) is(2)

βH=σ

∫
dxdy

[√
1+ (∇h)2 −1

]
≈ σ

2

∫
dxdy (∇h)2 , (5)
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where |∇h| � 1, i.e. long wavelength and small amplitude, has been
assumed. The Gaussian nature of the capillary wave model allows analytic
calculation of thermal averages. The local interface position is distributed
according to a Gaussian distribution

P(h)=〈δ(h(x, y)−h)〉= 1√
2π s

e−h2/2s2
(6)

with variance

s2 =〈h2〉= 1
2πσ

∫
dq

1
q

= 1
2πσ

ln
L

Bcw
. (7)

In order to avoid divergence of the integral, a lower cutoff 2π/L and
an upper cutoff 2π/Bcw have been introduced. Here L is the system size,
which determines the maximal allowed wavelength and provides a natu-
ral lower cutoff for the capillary wave spectrum. The cutoff length Bcw,
which is so far arbitrary, sets the scale below which capillary wave the-
ory ceases to be valid. As there should be no capillary waves with wave-
length smaller than the intrinsic width of the interface, Bcw should be of
the order of the correlation length. The factor 2π in the lower cutoff is
due to periodic boundary conditions and has also been introduced in the
upper cutoff for convenience. The phenomenological capillary wave model
thus requires two inputs: the macroscopic interface tension σ and the cut-
off Bcw. While the interface tension near the critical temperature is known
from scaling,(4) the cutoff Bcw is unknown.

In the capillary wave picture the instantaneous interface profile is a
sharp step function between the two phases. Nevertheless, in the thermal
average the capillary wave fluctuations produce a continuous density pro-
file

ρ(z)=
∫

dh sgn(z−h)P (h)= erf
(

z√
2s

)
(8)

with a finite width whose square is proportional to the variance s2 (7) and
thus to the logarithm of the system size L. In other words, the apparent
width of the interface depends on the length scale on which the interface
is studied and diverges in the thermodynamic limit.

2.3. Convolution Approximation

The two different descriptions of the interface profile – intrinsic pro-
file and capillary wave theory – can be reconciled by adopting the view
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that the intrinsic profile describes the interface on a microscopic scale of
the order of the correlation length, while capillary wave theory describes
the macroscopic interface fluctuations of wavelengths much larger than the
correlation length. Neglecting the coupling of the capillary wave fluctua-
tions to the intrinsic interfacial structure, the interface can be viewed as
a fluctuating capillary wave theory membrane h(x, y), to which an intrin-
sic profile φ(z) is “attached”. In this way an instantaneous profile φ(z −
h(x, y)) is obtained. Performing the thermal average over the capillary
waves, the “apparent” profile is given by the convolution

m(z)=
∫

dhφ(z−h)P (h). (9)

In this convolution approximation, the intrinsic profile φ is thus broad-
ened by capillary wave fluctuations. The broadening increases with the sys-
tem size according to Eqs. (6) and (7) corresponding to the fact that in a
larger system more capillary waves are allowed.

2.4. Interface Width

The interface width cannot be defined in a unique way, and various
definitions have been used in the literature (see e.g. refs. 4, 8 and 14). For
numerical purposes, a suitable definition of the squared interface width is
the second moment of a weight function which is proportional to the gra-
dient of the interface profile m:

w2 =
∫
dz z2m′(z)∫
dzm′(z)

. (10)

Due to the linearity of this definition and of the convolution approxima-
tion (9), the squared width w2 of the convolution profile m is simply the
sum of the intrinsic width squared w2

int of the intrinsic profile φ, Eq. (4),
and of the capillary width squared w2

cw = s2 of the capillary wave profile
ρ, Eq. (8):

w2
ca =w2

int +w2
cw = π2

3
ξ2 + 1

2πσ
ln

L

Bcw
. (11)

This expression shows the broadening of the intrinsic profiles by capillary
waves. It can be cast into a temperature-independent form by expressing
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all lengths in units of twice the correlation length:

ŵ2
ca =

(
w

2ξ

)2

= ŵ2
int + ŵ2

cw = π2

12
+ Âcw log2

L̂

B̂cw
, (12)

where L̂=L/2ξ , B̂cw =Bcw/2ξ . Here the slope

Âcw = ln 2
8πσξ2

=0.265(2) (13)

contains the universal constant σξ2 = 0.1040(8).(20,21) We also considered
other definitions of the interface width, e.g. with a weight function pro-
portional to (m′(z))2, but the results to be discussed below are not altered
significantly.

3. MONTE CARLO CALCULATION

3.1. Monte Carlo Setup

In experiments or Monte Carlo simulations of systems with interfaces
the observed interface profile and width are the total ones, including the
effects of the intrinsic structure as well as of the capillary waves. In order
to investigate the question whether the intrinsic structure can be sepa-
rated from the effects of capillary waves, suitable observables have to be
constructed. We have studied this question by means of Monte Carlo sim-
ulations of the three-dimensional Ising model, which is in the same univer-
sality class as three-dimensional binary mixtures. The results allow to test
the predictions from capillary wave theory and the validity of the convo-
lution approximation.

In the simulations a cubic lattice of size L×L×D is used, with spins
s(x, y, z)∈{±1} on each lattice site (x, y, z). The presence of an interface is
enforced by antiperiodic boundary conditions in the z-direction, while the
boundary conditions in the x, y-directions are periodic. The lattice sizes
are varied from L = 32 to 512 and from D = 50 to 180. To reduce criti-
cal slowing down, the Single-Cluster-Wolff algorithm(22) is used to allow
simulations at reduced temperatures t = (T − Tc)/Tc = −0.05, −0.01 and
−0.004, corresponding to correlation lengths ξ =1.65, 4.56 and 8.13 in lat-
tice units, respectively.

In order to analyze the interface on different length scales a blocking
procedure is applied. The system is split into columns of block size B ×B
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and of length D. The block size B will later be varied to allow for system-
atic analysis. In each block i a local block profile is calculated by averag-
ing over the lateral coordinates in the block:

mi(z)= 1
B2

∑
x,y∈Block i

s(x, y, z) . (14)

3.2. Local Interface Position

Due to strong thermal fluctuations near the critical point the interface
position for this profile is not well-defined. Various methods have been pro-
posed to determine the interface position (see e.g. refs. 15, 23 and 24) and
applied to total interface profiles, i.e. for the profile (14) at B =L. These meth-
ods, however, are not appropriate for our purpose, because they either neglect
bulk fluctuations, whose contributions we want to take into account fully, or
they suffer from a lack of translational invariance: If the interface is, due to
interface wandering, not in the middle of the system, the fluctuations above
and below the interface do not average out, leading to a biased value for the
interface position. This bias can be neglected for profiles on sufficiently large
length scales, i.e. for block profiles with sufficiently large B, but not for the
strongly fluctuating profiles on smaller length scales B.

To solve this problem, a translationally invariant method to determine
the interface position is proposed.(25)2 Because of the periodic/antiperiodic
boundary conditions, the Ising lattice is wrapped to a torus. The antipe-
riodicity is implemented by taking the couplings between nearest neigh-
bours s(x, y, z) and s(x, y, z + 1) to be negative for a particular value of
z = za . Superficially, the choice of za appears to break translation invari-
ance along the z-direction. This is, however, not the case. Under a shift
of za the Hamiltonian remains invariant, if at the same time those spins,
which cross the plane of antiperiodicity, are flipped. Consequently trans-
lation invariance remains a symmetry. Observables should be constructed
in such a way that they also respect translation invariance. Translational
invariance of our method to determine the interface position is achieved
in the following way. The antiperiodicity point za is shifted through the
system successively. The values of the block profiles mi(z), which cross the
antiperiodicity plane z = za , change signs appropriately. For a monotone
interface profile function m(z), all values would get the same sign, if za

coincides with the centre of the interface. Correspondingly, we define the

2After completion of this work ref. 26 has been pointed out to us, where the same method is
being used.
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location z of the interface to be that value of za , which makes the number
of values of mi(z) having the same sign maximal, i.e. being mostly pos-
itive or mostly negative. Mathematically this point can be determined as
the maximum of |∑z mi(z)|. In this way, one assures that the fluctuations
near the interface determine the precise location of the interface position.
It would also be possible to use the minimum of |∑z mi(z)|, which is
attained when the interface is located opposite of za . In this case, however,
fluctuations deep in the bulk phase opposite (on the torus) to the interface
position would account for the precise location of the interface position,
which is physically less meaningful.

This boundary shift method very successfully determines the interface
positions for strongly fluctuating profiles even on rather small length scales
B, but of course fails for extremely small length scales B = 1,2,3, where
the profiles mi(z) are still reminiscent of their Ising nature with only two
allowed values ±1 and thus do not possess a well-defined interface posi-
tion at all. This will result in Ising lattice artefacts for extremely small
block sizes in the later discussion. But as neither of the interface models
discussed in Section 2 applies on a microscopic scale, this deficiency of the
method does not prevent a test of the models.

3.3. Interface Profile

In order to obtain the interface profile without fluctuations on length
scales larger than B, the block profiles mi(z) can now be shifted such that the
interface position is in the middle of the system. Note that values that pass
the antiperiodic boundary conditions change sign (spin flip). To assure that
the profile values above the interface are predominantly positive, an overall
sign change is applied if necessary. The shift procedure corresponds to a
measurement in a moving frame that is wandering with the local interface,
i.e. to an elimination of the zero mode within the block. One can now take
the block and Monte Carlo average over the block profiles mi(z) to obtain
the local interface profile m(z) on the scale of the block length B. This pro-
file corresponds to the apparent profile (9) of the convolution approximation
measured on a length scale of the block size B.

The interface width of the profile is determined via a discretized gradi-
ent analysis corresponding to Eq. (10). Let the z-coordinates take the values
1,2, . . . ,D. An auxiliary coordinate t =z−D/2 is introduced which labels the
positions between adjacent lattice sites and is centered about the middle of the
system, assuming the values −D/2+1,−D/2+1, . . . ,D/2−1. A normalized
gradient is then defined by

p(t)= 1
N

∣∣∣∣m
(

t + D

2
+1

)
−m

(
t + D

2

)∣∣∣∣ (15)
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with the normalization

N =
∑

t

∣∣∣∣m
(

t + D

2
+1

)
−m

(
t + D

2

)∣∣∣∣ . (16)

The interface width is the second moment of this weight function:

w2 =
∑

t

t2 p(t)−
(∑

t

t p(t)

)2

. (17)

So far each block has been considered as an Ising system of size
B × B × D in its own right, for which the same measurements as for a
total Ising system have been made. In this way all fluctuations of wave-
lengths larger than B have been cut off. The opposite approach is to first
average over each block and then consider the resulting Ising system of
size L/B ×L/B ×D, thereby “averaging out” all fluctuations of wavelength
smaller than B. This coarse graining view is adopted in order to obtain a
capillary wave like description of the interface. In each block i the inter-
face position hi is determined by the above described boundary shift pro-
cedure and then measured relative to the total interface position, i.e. the
position of the profile mi for B =L, determined by the same method. The
resulting height variables for each Monte Carlo configuration form the
snapshot of a membrane corresponding to the function h(x, y) of the cap-
illary wave model, but coarse grained on the length scale B. According to
the capillary wave model, the distribution P(h) of these height variables
hi over all blocks and Monte Carlo configurations should be Gaussian,
Eq. (6).

4. RESULTS

4.1. Confirmation of the Capillary Wave Model

The measured distributions P(h) of the interface heights at t =−0.01
and L = 128 for various coarse graining lengths B are shown in Fig. 1.
They display Gaussian-like peaks which become narrower with increasing
block size, thus qualitatively following the capillary wave model predic-
tions Eqs. (6) and (7). For B = L the distribution has degenerated to a
delta peak. The additionally displayed Gaussian fits show that the mea-
sured peaks are leptocurtic (i.e. are sharper and have longer tails than
Gaussian distributions), but become very close to a Gaussian distribution
for larger block size. This confirms the expectation that the macroscopic
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Fig. 1. Distributions P(h) of the interface positions h, coarse grained on different block
sizes B, in a system of length L = 128 at reduced tempetature t = −0.01. In addition to the
Monte Carlo data (points), Gaussian fits are shown (lines).

capillary wave model is only valid on length scales larger than some cut-
off Bcw (compare the discussion after Eq. (7)). For a quantitative analysis,
a χ2-test has been performed for the distributions P(h) at temperatures
t =−0.05 and −0.01, showing consistency with a Gaussian distribution for
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block sizes B larger than

Bcw ∼ (5−7) ξ , (18)

which is a reasonable estimate of the capillary wave cutoff Bcw. Even for
large block sizes, however, the value of P(h = 0) is extraordinarily large.
This is due to the lattice discretization with too low resolution at the cen-
tre of the Gaussian peak.

The variances of the measured distributions P(h) increase with the
logarithm of the system size and decrease with the logarithm of the block
size according to Eq. (7). The prefactor 1/(2πσ) is of the right order
of magnitude, corresponding to surface tensions σ in the range between
0.033 and 0.038 for t = −0.05. This agrees with the value σ = 0.035(1)

obtained from the scaling formula σ =σ0|t |2ν with σ0 =1.55(5)(20) and ν =
0.6304(13),(27) and with the value σ =0.0342(2) from refs. 15.

The capillary wave model thus yields an appropriate description of
the interface in the three-dimensional Ising model on length scales larger
than a couple of correlation lengths.

4.2. Test of the Convolution Approximation

To probe the convolution approximation, Eq. (9), the measured inter-
face profiles m(z) on various block sizes B and their widths w2 are ana-
lyzed. The upper part of Fig. 2 shows the total interface profiles m(z) (i.e.
for B = L) for various system sizes L. The profile for L = 32 displays a
lattice artefact near the interface position, but the profiles for larger sys-
tem lengths are smoothly varying profiles of a hyperbolic tangent or error
function type as proposed by the theoretical interface models of Section 2.
The broadening of the profiles with increasing system size due to capillary
waves is clearly visible.

The lower part of Fig. 2 shows the interface profiles m(z) on different
block scales B. In the microscopic regime, i.e. for very small block sizes,
lattice artefacts dominate and no reasonable interface profile is obtained.
With increasing block size, however, the profiles approach a smooth hyper-
bolic tangent or error function type profile which is then broadened with
increasing block size. This illustrates the renormalization group block spin
procedure leading from a microscopic Ising “profile” to the mean field
profile, which is then broadened by capillary waves, thus qualitatively fol-
lowing the convolution approximation (9).

For a quantitative analysis the total interface widths ŵ2 of the total
interface profiles (i.e. for B =L) are plotted as functions of the logarithm
of the system size L̂ for various temperatures t , see Fig. 3. As predicted
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Fig. 2. Top: Total interface profiles (i.e. for B = L) for system lengths L = 32,64,128,256
and 512. Bottom: Interface profiles m(z) for different coarse graining lengths B =
1,2,4, . . . ,128=L. In both pictures the reduced temperature is t =−0.01.

by capillary wave theory and scaling, Eq. (12), the width expressed in units
of twice the correlation length all lie on the same temperature-independent
straight line, at least for large length scales L̂. The linear fit displayed in
Fig. 3,

ŵ2 =0.28(1) log2 L̂+0.30(4) , (19)

is parallel to the theoretical prediction ŵ2
ca, Eq. (12), from the convolution

approximation with the slope Âcw =0.265(2).
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Fig. 3. Total interface widths ŵ2 (in temperature-independent units) of profiles for B =L at
the given temperatures t . Statistical errors are smaller than the displayed symbols. For com-
parison, the intrinsic width ŵ2

int =π2/12 and the prediction ŵ2
ca from the convolution approx-

imation (with an offset Âcw log2 B̂cw) are shown.

The logarithmic divergence of the total interface width (for profiles
with B = L) in the Ising model has already been observed in other Ising
Monte Carlo simulations,(13–15) where the temperature closest to the crit-
ical point was t =−0.2. Converting to temperature-independent units, the
obtained slopes are Âcw =0.222,(13) 0.278(14) and 0.244(15). The simulation
by Stauffer(24) at t =−0.01 and L= 2000 gave the single value ŵ2 = 0.99,
which is far below our value ŵ2 =2.49 (extrapolated from Eq. (19)). This
discrepancy is due to Stauffer’s definition of the interface width which only
measures the capillary wave part of the width and eliminates the intrinsic
contribution.

Fig. 4 shows the widths ŵ2 of the profiles coarse grained on length
scales B <L as a function of the logarithm of the block size B̂. For each
block size B̂ the system shows a width ŵ2 characteristic for this length
scale, independent of the temperature. The variables expressed in units of
twice the correlation length thus indeed display temperature-independent
behaviour. Note that the widths of profiles on scales B < L have to be
treated separately from those of total profiles for B = L due to differ-
ent boundary conditions. For B =L, periodic boundary conditions apply,
while for B <L the boundary conditions are dictated by the actual system
configurations, resulting in a different spectrum of capillary waves.
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Fig. 4. Interface widths ŵ2 (in temperature-independent units) of profiles coarse grained on
block lengths B <L. Symbols are as in Fig. 3. In addition, the correlation length ξ̂ is shown.

As expected from capillary wave theory, the widths grow with increas-
ing block size B̂, and for large block sizes a linear increase with log2 B̂ is
obtained. The linear fit in Fig. 4

ŵ2 =0.26(3) log2 B̂ +0.57(1) (20)

is parallel to the theoretical prediction ŵ2
ca, Eq. (12), from the convolu-

tion approximation with the slope Âcw = 0.265(2), thus again confirming
the capillary wave picture on large length scales.

In comparing the axis intercepts of the linear fits in Figs. 3 and 4 to
those of the theoretical prediction (using as value for the intrinsic width
ŵ2

int either the theoretical value π2

12 , Eq. (12), or the “microscopic” value
at small length scales as determined from Fig. 4), the parameter Bcw can
be determined. One obtains the reasonable values

Bcw ∼ (3−7) ξ (21)

of the same order of magnitude as in Eq. (18). The cutoff Bcw can thus be
consistently chosen to make theory and simulation agree on large length
scales.
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4.3. Intrinsic Width

On smaller length scales the width in Fig. 4 grows slower than linear
with the block size and eventually becomes saturated at a microscopic width
ŵ2 ≈0.2 for microscopic length scales B <ξ . This behaviour is in qualitative
agreement with the convolution approximation. However, the microscopic
width is significantly smaller than the intrinsic width, which is expected to
have the much higher value ŵ2

int = π2/12, see Eq. (12). The notion of an
intrinsic profile implies that the width should approach this value on the
intrinsic length scale, i.e. in some region around B ∼ ξ . In our simulations
such an intrinsic regime is not observed, contrary to expectations.

The reason for the deviation from the expected picture is not clear.
The smallness of the interface width on the smallest scales suggests that it
is determined by Ising lattice artefacts. This could be clarified by searching
for the intrinsic profile in the Ising model with larger correlation lengths,
i.e. closer to the critical point, or in φ4-theory.

5. CONCLUSION

In this article the interface in the three-dimensional Ising model has
been studied on different length scales. A procedure has been implemented
that allows to separate large and small wavelength contributions to the
interface profile in a translation invariant way. It is found that on large
length scales the interfacial properties are well described by capillary wave
theory with a reasonable choice Bcw ∼ (3−7) ξ for the cutoff of the capil-
lary wave spectrum. The interface width shows universal behaviour, which
is in quantitative agreement with the theoretical predictions. The data
for the widths are consistent with the convolution approximation which
includes both the intrinsic structure and the capillary waves. The associ-
ated intrinsic width of the interface, however, turns out to be much smaller
than expected from field theory, and seems to represent a “microscopic
profile” related to the discrete nature of the Ising variables. An intrinsic
profile could thus not be isolated for the Ising model at the simulated
temperatures.

Note added in proof: In ref. 28, the width of colour flux tubes in the
3-dimensional Z2 gauge model has been investigated, which is dual to the
3-dimensional Ising model. The results are in agreement with ours.
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